.Today partners are testing Secure Boot using WHCK tools and Microsoft provided certificates. –But passing Windows requirements is just a start.OEMs and ODMs need to have a plan for securely creating and managing their own keys. Mar 25, 2015 Or you could tweak Secure Boot and only allow operating systems signed with your own personal signing key to boot. Windows 10 gives manufacturers an option Windows 10 makes the user-configuration. Aug 26, 2016 What You Need to Know about Windows 10 Secure Boot Keys Gavin Phillips August 26, 2016 In what could be absolutely considered a glittering example of exactly why golden keys offering a backdoor into secure services shouldn’t exist, Microsoft accidentally leaked the master key to their Secure Boot system. Windows Secure Boot Key Creation and Management Guidance Secure Boot Key Generation and Signing Using HSM (Example) UEFI Validation Option ROM Validation Guidance. 8 rows Windows Secure Boot Key Creation and Management Guidance Secure Boot Key Generation.
Applies to:
The Windows operating system has many features to help protect you from malware, and it does an amazingly good job. Except for apps that businesses develop and use internally, all Microsoft Store apps must meet a series of requirements to be certified and included in the Microsoft Store. This certification process examines several criteria, including security, and is an effective means of preventing malware from entering the Microsoft Store. Even if a malicious app does get through, the Windows 10 operating system includes a series of security features that can mitigate the impact. For instance, Microsoft Store apps are sandboxed and lack the privileges necessary to access user data or change system settings.
Windows 10 has multiple levels of protection for desktop apps and data, too. Windows Defender uses signatures to detect and quarantine apps that are known to be malicious. Windows Defender SmartScreen warns users before allowing them to run an untrustworthy app, even if it’s recognized as malware. Before an app can change system settings, the user would have to grant the app administrative privileges by using User Account Control.
Those are just some of the ways that Windows 10 protects you from malware. Su podium v2 5 plus license key generator. However, those security features protect you only after Windows 10 starts. Modern malware—and bootkits specifically—are capable of starting before Windows, completely bypassing operating system security, and remaining completely hidden.
When you run Windows 10 on a PC or any PC that supports Unified Extensible Firmware Interface (UEFI), Trusted Boot protects your PC from malware from the moment you power on your PC until your anti-malware starts. In the unlikely event that malware does infect a PC, it can’t remain hidden; Trusted Boot can prove the system’s integrity to your infrastructure in a way that malware can’t disguise. Even on PCs without UEFI, Windows 10 provides even better startup security than previous versions of Windows.
First, let’s examine what rootkits are and how they work. Then, we’ll show you how Windows 10 can protect you.
Rootkits are a sophisticated and dangerous type of malware that run in kernel mode, using the same privileges as the operating system. Because rootkits have the same rights as the operating system and start before it, they can completely hide themselves and other applications. Often, rootkits are part of an entire suite of malware that can bypass local logins, record passwords and keystrokes, transfer private files, and capture cryptographic data.
Different types of rootkits load during different phases of the startup process:
Windows 10 supports four features to help prevent rootkits and bootkits from loading during the startup process:
Figure 1 shows the Windows 10 startup process.
Figure 1. Secure Boot, Trusted Boot, and Measured Boot block malware at every stage
Secure Boot and Measured Boot are only possible on PCs with UEFI 2.3.1 and a TPM chip. Fortunately, all Windows 10 PCs that meet Windows Hardware Compatibility Program requirements have these components, and many PCs designed for earlier versions of Windows have them as well.
The sections that follow describe Secure Boot, Trusted Boot, ELAM, and Measured Boot.
When a PC starts, it first finds the operating system bootloader. PCs without Secure Boot simply run whatever bootloader is on the PC’s hard drive. There’s no way for the PC to tell whether it’s a trusted operating system or a rootkit.
When a PC equipped with UEFI starts, the PC first verifies that the firmware is digitally signed, reducing the risk of firmware rootkits. If Secure Boot is enabled, the firmware examines the bootloader’s digital signature to verify that it hasn’t been modified. If the bootloader is intact, the firmware starts the bootloader only if one of the following conditions is true:
All x86-based Certified For Windows 10 PCs must meet several requirements related to Secure Boot:
These requirements help protect you from rootkits while allowing you to run any operating system you want. You have three options for running non-Microsoft operating systems:
To prevent malware from abusing these options, the user must manually configure the UEFI firmware to trust a non-certified bootloader or to turn off Secure Boot. Software cannot change the Secure Boot settings. For more information about Secure Boot, read the blog, Protecting the pre-OS environment with UEFI.
Like most mobile devices, ARM-based Certified For Windows RT devices, such as the Microsoft Surface RT device, are designed to run only Windows 8.1. Therefore, Secure Boot cannot be turned off, and you cannot load a different operating system. Fortunately, there is a large market of ARM devices designed to run other operating systems.
Trusted Boot takes over where Secure Boot leaves off. The bootloader verifies the digital signature of the Windows 10 kernel before loading it. The Windows 10 kernel, in turn, verifies every other component of the Windows startup process, including the boot drivers, startup files, and ELAM. If a file has been modified, the bootloader detects the problem and refuses to load the corrupted component. Often, Windows 10 can automatically repair the corrupted component, restoring the integrity of Windows and allowing the PC to start normally.
Because Secure Boot has protected the bootloader and Trusted Boot has protected the Windows kernel, the next opportunity for malware to start is by infecting a non-Microsoft boot driver. Traditional anti-malware apps don’t start until after the boot drivers have been loaded, giving a rootkit disguised as a driver the opportunity to work.
Early Launch Anti-Malware (ELAM) can load a Microsoft or non-Microsoft anti-malware driver before all non-Microsoft boot drivers and applications, thus continuing the chain of trust established by Secure Boot and Trusted Boot. Because the operating system hasn’t started yet, and because Windows needs to boot as quickly as possible, ELAM has a simple task: examine every boot driver and determine whether it is on the list of trusted drivers. If it’s not trusted, Windows won’t load it.
An ELAM driver isn’t a full-featured anti-malware solution; that loads later in the boot process. Windows Defender (included with Windows 10) supports ELAM, as does Microsoft System Center 2012 Endpoint Protection and several non-Microsoft anti-malware apps.
If a PC in your organization does become infected with a rootkit, you need to know about it. Enterprise anti-malware apps can report malware infections to the IT department, but that doesn’t work with rootkits that hide their presence. In other words, you can’t trust the client to tell you whether it’s healthy.
As a result, PCs infected with rootkits appear to be healthy, even with anti-malware running. Infected PCs continue to connect to the enterprise network, giving the rootkit access to vast amounts of confidential data and potentially allowing the rootkit to spread across the internal network.
Working with the TPM and non-Microsoft software, Measured Boot in Windows 10 allows a trusted server on the network to verify the integrity of the Windows startup process. Measured Boot uses the following process:
Depending on the implementation and configuration, the server can now determine whether the client is healthy and grant the client access to either a limited quarantine network or to the full network.
Figure 2 illustrates the Measured Boot and remote attestation process.
Figure 2. Measured Boot proves the PC’s health to a remote server
Windows 10 includes the application programming interfaces to support Measured Boot, but you’ll need non-Microsoft tools to implement a remote attestation client and trusted attestation server to take advantage of it. For an example of such a tool, download the TPM Platform Crypto-Provider Toolkit from Microsoft Research or Microsoft Enterprise Security MVP Dan Griffin’s Measured Boot Tool.
Measured Boot uses the power of UEFI, TPM, and Windows 10 to give you a way to confidently assess the trustworthiness of a client PC across the network.
Secure Boot, Trusted Boot, and Measured Boot create an architecture that is fundamentally resistant to bootkits and rootkits. In Windows 10, these features have the potential to eliminate kernel-level malware from your network. This is the most ground-breaking anti-malware solution that Windows has ever had; it’s leaps and bounds ahead of everything else. With Windows 10, you can truly trust the integrity of your operating system.